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Research on Building Real-Time Data Pipelines and Fault-Tolerance Mechanisms Based on
an ODS
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[Abstract] In an era where big data and real—time computing drive business decisions, building highly reliable,
low—latency data pipelines has become a core capability of modern data platforms. Using the Operational Data
Store (ODS) of a large streaming advertising platform as a practical backdrop, this paper explores end—to—end
methods for constructing real—time data pipelines and multi—layer fault tolerance. It systematically explains the
complete technical chain—from unified event collection and Apache Flink—based real—time data lake ingestion,
through ODS data modeling, to metric service enablement and business—side reconciliation—while highlighting
the underlying philosophy of fault—tolerant design. The study spans data—level error isolation and multi—tier
correction, as well as system—level end—to—end monitoring and automated failure recovery. Practice shows that
by embedding fault—tolerance thinking proactively and systematically into every stage of the pipeline, the
architecture effectively ensures data quality, service availability, and eventual consistency, offering a
production—proven blueprint and best practices for building enterprise—grade, highly available real—time data
systems.
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