文章类型: 论文1刊号 (ISSN): 2705-0637(P) / 2705-0645(O)

工程项目管理风险识别与应对策略

王伟阳

山东理工大学 山东淄博 255012

DOI: 10.12238/ems.v7i4.12675

[摘 要]本研究深入探讨了工程项目管理风险识别与应对策略,提出基于大数据与人工智能风险识别技术及数字化风险管理平台,通过实际案例分析验证其有效性。研究还涉及绿色施工、环境保护及社会责任融入风险管理策略。未来研究方向包括深化新技术应用、跨学科整合、复杂项目与新兴领域风险管理、标准化规范化及可持续发展研究,以期提高工程项目管理风险应对效率和准确性,为项目长期效益提供保障。

[关键词] 工程项目管理; 风险识别; 应对策略; 数字化风险管理

1. 引言

在全球经济一体化和城市化加速推进下,工程项目规模 不断扩大,技术复杂度提升,面临风险因素也日益增多。这 些风险不仅影响项目进度、成本和质量, 还导致项目失败, 造成巨大经济损失。从宏观角度看,工程项目是国家基础设 施建设和经济发展重要支撑,但面临政治、经济、自然和技 术等多重风险。微观上,有效风险管理对于企业生存和发展 至关重要。国外对工程项目管理风险研究起步较早,已开发 出多种风险识别方法和工具,并在实践中取得了成果。相比 之下,我国研究起步较晚,但近年来也取得了长足进步,提 出了模糊综合评价法、灰色关联分析法等风险评估方法,并 在三峡等大型工程项目中得到了应用。然而,当前研究仍存 在一些不足。风险识别全面性和准确性有待提高,特别是对 于新兴技术和复杂环境下工程项目;风险应对策略针对性和 有效性需进一步加强,同时风险管理信息化水平也有待提升。 因此,未来研究需要创新风险识别方法,加强风险应对策略 定制化研究,提升风险管理信息化水平,有助于完善工程项 目管理风险理论体系,为实践提供更坚实理论基础。

2. 工程项目管理风险

2.1 工程项目管理风险特征

工程项目管理风险是指在项目生命周期中,受内部和外部各种不确定因素影响,导致项目目标无法实现或偏离预期性。这些风险具有客观性,不以人意志为转移,且发生及其后果具有不确定性,源于项目复杂性、信息不完整性等因素。风险在项目实施过程中具有可变性,其性质、后果及发生概率随项目进展、环境变化及应对措施实施而改变[1]。风险还具有相对性,不同项目参与方对同一风险感受和承受能力不同,且风险大小取决于项目目标和期望。工程项目风险还呈现阶段性特点,不同阶段风险表现形式和影响程度各异,从决策阶段市场前景不确定性到设计阶段设计方案合理性,再到施工阶段施工安全、工程质量等,直至竣工验收阶段验收标准变化及运营维护等,均构成项目管理关键挑战。因此,全面识别、评估并有效应对这些风险,对于确保项目顺利实施至关重要。

2.2 风险分类

工程项目管理面临多种风险,其中传统风险类型包括成本风险、质量风险和时间风险。成本风险主要源于原材料价格波动、人工成本增加及设备维修费用上升,导致项目成本超出预算。质量风险则与施工工艺不合理、材料质量不过关及施工人员技能不足有关,直接影响工程项目使用功能、安全性和耐久性。时间风险则因材料供应延迟、工人技能短缺及天气不利等因素导致项目进度延误,增加成本并影响整体效益。新型风险类型如数字化转型风险和可持续发展风险也日益凸显。数字化转型过程中,技术集成度不高、信息安全

问题以及数字化施工人才短缺均成为制约因素,影响项目管理效率和安全性。可持续发展风险则要求工程项目在环境保护、资源利用和社会影响等方面充分考虑,否则面临环保纠纷、资源浪费及社会矛盾等风险。工程项目管理需全面识别并有效应对这些风险,以确保项目顺利实施并达到预期目标。

3. 创新风险识别方法

3.1 基于大数据与人工智能风险识别技术

大数据分析与人工智能算法在工程项目管理风险识别与 预测中发挥着关键作用。大数据分析技术能够整合、清洗和 分析项目产生海量数据,包括设计图纸、施工进度、质量检 测、设备运行及原材料采购等,挖掘潜在风险因素[2]。通过 历史项目数据分析, 可建立地质条件与基础施工风险关联模 型,提前识别坍塌风险;收集外部数据如市场动态、政策法 规及自然灾害预警, 识别外部风险因素。利用物联网技术, 大数据分析还能实现风险实时监测和动态识别, 及时预警异 常情况。人工智能算法,特别是机器学习和深度学习,为风 险预测提供了科学准确工具。机器学习算法通过学习大量历 史数据,建立风险预测模型,预测未来风险。深度学习算法 则具有更强特征学习和模式识别能力,能处理复杂数据,识 别影响工程质量潜在风险因素,并预测质量问题发生概率。 结合大数据分析技术,人工智能算法可实现对工程项目风险 全方位、深层次预测,提供科学依据制定风险应对策略。人 工智能算法具有自适应和自学习能力, 能随着项目进展和数 据更新不断优化风险预测模型,提高预测准确性和可靠性。

3.2 情景模拟技术在风险识别中应用

情景模拟技术是一种有效工程项目管理风险识别方法,它综合考虑项目内外部因素,构建不同情景以全面识别潜在风险。在构建风险场景时,需明确项目目标和背景,分析关键风险因素,如市场需求变化、施工技术难题、政策法规调整、资金供应不足及自然灾害等。以大型商业综合体项目为例,可构建市场需求下滑、施工技术难题、政策法规调整、资金供应不足和自然灾害等情景,并深入分析各情景对项目影响程度和性。通过专家打分法、蒙特卡洛模拟等定性和定量方法,量化评估风险情景,确定风险等级。情景模拟技术不仅帮助项目管理者提前识别风险、制定应对策略,降低风险概率和影响,还为项目决策提供数据支持和风险分析,助力选择最优方案,确保项目目标顺利实现。在项目实施过程中,该技术还能根据实际情况动态调整风险情景,及时应对,保障项目顺利进行。

3.3 虚拟现实技术在风险识别中应用

虚拟现实(VR)技术为工程项目管理风险识别带来了革新。通过构建逼真三维虚拟环境,VR技术让项目人员身临其境地感受施工现场,增强对风险感知。在虚拟环境中,项目人员全面观察施工环境、设备布局、操作流程等,发现潜在

文章类型: 论文I刊号 (ISSN): 2705-0637(P) / 2705-0645(O)

风险因素,如安全防护不足、设备故障隐患等。VR 技术还能模拟各种风险情景,如自然灾害、人为事故等,让项目人员在虚拟环境中进行应对演练,提高风险应对能力。VR 技术可与其他技术如物联网、大数据、人工智能结合,实时采集和分析项目进度、质量、安全等数据,发现风险规律和异常,实现自动预警和智能决策。在大型工业园区建设项目中,VR技术结合物联网和大数据分析,及时发现设备运行异常,预防安全事故。VR 技术为工程项目管理风险识别提供了全新视角和方法,提高了风险识别准确性和效率,其应用前景广阔,将为工程项目顺利实施提供有力支持。

3.4 工程项目管理风险案例分析

某大型建筑工程项目位于一线城市核心商业区,旨在打 造集高端写字楼、酒店、购物中心和公寓为一体综合性建筑, 总建筑面积50万平方米,总投资80亿元,建设周期5年。 项目面临施工场地狭窄、环保要求高、地质条件复杂等挑战, 同时追求节能环保和绿色建筑目标[3]。在项目启动阶段,团 队采用头脑风暴法、专家访谈法和历史数据分析法识别风险, 梳理出技术、成本、时间、质量和安全等主要风险因素。通 过层次分析法和模糊综合评价法量化评估,确定技术风险和 成本风险为高风险,时间风险和质量风险为中风险,安全风 险为低风险。针对这些风险,项目团队制定了应对策略:组 建技术顾问团队解决技术难题,建立材料价格监测机制和优 化采购流程控制成本, 合理规划施工场地和制定雨季施工方 案应对时间风险,建立健全质量管理体系确保质量,严格执 行安全管理制度和操作规程降低安全风险。实施这些策略后, 项目取得了良好效果,成功解决了技术难题,控制了成本, 保障了施工进度和质量,降低了安全事故发生率。此案例证 明,科学合理风险识别与应对策略能有效降低工程项目管理 中风险,确保项目目标实现,并在实施过程中不断优化和完 善风险管理措施,提高项目抗风险能力,实现可持续发展。

4. 创新风险应对策略

4.1 数字化风险管理策略

数字化风险管理平台是工程项目全面风险管理核心支 撑,它集成先进信息技术,覆盖风险识别、评估、应对和监 控全生命周期。该平台通过物联网、传感器等设备实时采集 项目进度、成本、质量、设备运行及市场等多源数据,运用 大数据分析、人工智能算法进行深度挖掘和分析,建立风险 预测模型,实现风险自动识别与预测。基于科学风险评估方 法,平台量化评估风险等级,为管理者提供决策支持,并通 过风险模拟和情景分析优选应对策略。风险监控与预警层则 实时监控风险状况,利用可视化技术直观展示风险动态,自 动预警并启动应急预案。用户交互层提供便捷操作界面,确 保数据安全与保密。数字化工具如传感器、物联网技术在风 险实时监控中发挥关键作用,实时监测建筑结构、施工环境 等参数,利用大数据分析、人工智能算法预测风险趋势,自 动识别不安全行为,提高风险管理效率和科学性。随着数字 化技术不断创新, 其在工程项目风险实时监控中应用将更加 广泛深入,为项目安全、质量和进度提供坚实保障。

4.2 合作与协同风险管理策略

在工程项目管理中,建立合作伙伴风险共担机制和优化 跨部门协同应对风险流程是提升项目抗风险能力关键。风险 共担机制通过明确各方风险责任、建立合理利益分配方案、 强化信息共享与沟通以及设立风险共担基金,有效整合各方 资源和力量,共同应对项目风险[4]。在大型基础设施建设项 目中,通过增加合同价款对施工单位进行风险补偿,或设立 风险共担基金应对极端天气等风险,确保项目顺利进行。优化跨部门协同应对风险流程也至关重要。明确各部门在风险应对中职责,建立高效沟通机制,简化审批环节以提高决策效率,以及加强部门之间协作与配合。项目管理部门负责统筹规划,技术部门负责技术支持,安全管理部门负责安全监控,采购部门负责物资供应,各部门各司其职,共同应对风险。通过定期风险沟通会议、项目管理信息化平台等实现信息实时共享和传递,提高风险应对效率。在某工程项目中,通过项目管理信息化平台,各部门能够实时上传和查看风险自实时共享和传递,提升了风险应对效率。建立风险应急响应机制,明确各部门应急响应流程和时间节点,确保在风险事件发生时能够迅速响应,有效控制风险,减少损失。持续改进跨部门协同应对风险流程,定期总结和评估风险应对工作,收集反馈意见,及时调整和优化流程,不断提升跨部门协同应对风险能力和水平。

4.3 基于可持续发展风险管理策略

在工程项目实施过程中,绿色施工与环境保护至关重要,但面临噪音、扬尘、废弃物处理和水资源管理等多重风险。为应对这些挑战,施工单位需选用低噪音设备、合理安排施工时间、设置隔音屏障以降低噪音;定期洒水降尘、覆盖或绿化裸露地面、管理施工车辆以减少扬尘;建立垃圾分类制度、回收再利用可回收物、专门处理有害垃圾以有效处理废弃物;优化施工工艺、安装节水器具、收集再利用雨水和施工废水以合理利用水资源。将社会责任纳入风险管理,充分考虑拆迁安置、就业机会和基础设施使用等问题,确保拆迁安置公平公正、为当地居民提供就业机会和培训、与政府和相关部门合作解决基础设施使用问题,以实现项目与社区和谐共生。这不仅有助于提升项目社会形象和声誉,减少实施阻力,还能促进当地经济发展,为项目长期效益和可持续发展奠定坚实基础。

5. 结束语

本研究聚焦于工程项目管理风险识别与应对策略,深入剖析风险,创新性地提出基于大数据与人工智能风险识别技术,结合情景模拟与虚拟现实技术,提高风险识别效率与准确性[5]。通过实际案例分析,展示风险识别、评估及应对策略实施效果。在风险应对策略上,构建数字化风险管理平台,实现风险全生命周期数字化管理,并引入合作伙伴风险共担机制,优化跨部门协同流程。提出绿色施工、环境保护及社会责任融入风险管理策略,保障项目长期效益。未来研究方向包括深化新技术应用、强化跨学科研究、关注复杂项目与新兴领域风险管理、加强标准化规范化研究及注重可持续发展风险管理研究,以期提供更全面、系统解决方案,应对不断变化工程项目管理风险挑战。

「参考文献]

- [1]基于事故预防工程项目安全风险评估及优化策略仿真研究[J]. 齐锡晶;李永超;张升进. 土木工程与管理学报,2022(05)
- [2]考虑保险机构参与重大工程风险管理激励模型[J]. 朱建波;时茜茜;张劲文;盛昭瀚.中国管理科学,2022(06)
- [3]考虑项目间依赖关系项目风险应对策略选择模型[J]. 张旭;白思俊;郭云涛;白礼彪.管理工程学报,2023(01)
- [4]基于 CiteSpace 我国建筑工程项目风险管理研究热点与前沿[J]. 宋婷;字德明.土木工程与管理学报,2021 (06)
- [5]公路工程项目组合施工进度风险防范策略[J]. 白礼彪;张璐瑶;孙怡晨;杨琦;秦选龙.中国公路学报,2021(09)