传感器在交通机电自动化控制中的应用研究

袁少林

山西交控科技转化有限公司 山西太原 030001

DOI: 10.12238/ems.v7i8.14695

[摘 要]在产业升级步伐不断提速的今天,工业制造、海洋探测、生态保护、交通管理等多个领域对产业升级改造愈发迫切。在这一形势下,传感技术的深入应用显著加速了相关产业的转型升级,推动了产业的迭代更新。特别是在我国的经济结构中,交通管理的地位日益重要,而机电自动化控制技术在这一领域的现代化发展中扮演着关键角色。因此,持续机电自动化控制系统,提升信息处理的速度与效率,成为了该领域研究和实践的重点。为了达成交通机电自动化控制系统智能化、数字化的目标,必须升级传感器技术,整合数字化、传感检测以及自动控制等先进科技,增强对各类信息的采集与反馈能力,提高传感器的智能化程度,以此优化并推进交通机电自动化控制系统的控制性能。

「关键词〕传感器;交通;机电自动化控制

引言:

作为交通自动化设备中的信息捕捉核心,传感器担当着 类似感受器官的角色,其依托自身多维的探测能力,借助传 感器内部各个敏感部件,对周遭信息进行迅速而精确的搜集。 传感器不仅具备智能化特征,能够对捕获的信息进行辨识和 深入分析,还能够为交通机电自动化控制系统输出关键的技 术支撑数据。基于这些数据,控制系统得以生成精确的操作 指令,并且迅速地将这些指令传递出去,进而促成交通自动 化设备的一体化、自动化及智能化控制的整体融合。

1. 相关概念概述

1.1 传感器技术概述

传感器是一种检测单元,其作为一种集成检测功能的设备,承担着搜集各类资讯、传输、处理以及储存的重要任务,并能以数字化或图形化的形式直观展现所收集的数据,以便于信息的记录和全方位的管理。当捕获到所需的检测数据后,这类设备能有效地将其转化为电信号等格式的信息,并通过网络及终端设备完成数据的输出。概括来说,这是一种能够感知并测量数据,进而转化为可输出信号的设备或精密部件,其能灵活地应对生物、物理及化学等各种效应,实现测量值的转换。追溯至 20 世纪 70 年代初期,传感器技术从最初的结构型传感器演进到固态传感器,由磁性材料、半导体等元件构成,并诞生了光敏传感器和热电偶传感器。到了 20 世纪 70 年代末,依托于微电子技术和集成电路技术的进步,传感器技术步入了低成本和模块化的发展阶段。20 世纪 80 年代,

传感器进一步演变为智能传感器,拥有自动检测、自动诊断和自适应等多种功能,并以微处理器为核心,优化了信号调节电路的设计,实现了与存储器的集成。融合了人工智能技术后,传感器的应用范围得以拓展,在工业等领域得到了广泛应用。目前,传感器技术已被广泛应用于航天、汽车等多个领域,为智能制造装备的运行提供了坚实支撑,确立了其不可或缺的地位。

1.2 传感器技术的发展历程

传感器技术自诞生以来,已历经三代变革:首代传感器以结构变化为基本原理,如电阻应变式传感器,通过结构参数的变动来感知并转换信号。继之而起的第二代,即固体传感器,采用半导体、电介质、磁介质等材料,依托光敏、热电、霍尔等效应,能够生产出光敏、热电偶、霍尔等多种传感器。伴随着微电子和集成电路技术的进步,集成的传感器如电荷耦合器件(CCD)问世,这类传感器以优异的性能、低廉的成本和灵活的接口著称。第三代则是集成了智能功能的传感器,能够检测、诊断外部信息并进行数据处理,是微型计算机和检测技术融合的产物。例如,微处理器便将微型计算机、存储器和接口集成于单一芯片上,为传感器赋予了人工智能的能力。在智能测量技术推动下,传感器的智能化水平不断提升,展现出记忆、自诊断、多参数测量和联网通信等先进功能。

1.3 机电自动化控制中传感器技术现状及作用 传感器是一种依据一定规律将检测到的信息转化为一致

第7卷◆第8期◆版本 1.0◆2025年

文章类型: 论文1刊号 (ISSN): 2705-0637(P) / 2705-0645(O)

类型数值的部件。现阶段,其在工业制造领域得到了广泛的 应用,人们将其视为对感官功能的扩展,故此得名。在自动 化系统的监测以及作业环境中,传感器能有效地发挥其功能, 将监测到的信息转换后传递至机电一体化系统,确保设备的 精准与可靠运行。随着工业生产水平的提升,对传感器技术 的要求也越来越高,这推动了传感器技术的进一步革新与发 展。目前,传感器技术已在众多行业得到广泛应用,并且其 技术正不断进步,集成化水平日益提升。集成的传感器不仅 体积小、重量轻,稳定性也得到了显著增强,为自动化控制 系统提供了更有力的技术支持。技术的提高还降低了生产传 感器的成本,实现了规模化生产。总的来说,传感器的应用 和发展空间巨大。在当前的机电自动化控制系统中, 传感器发 挥着至关重要的作用。在机电自动化控制系统发展过程中,传 感器的角色不容忽视, 其不仅满足了系统稳定运行的需求, 还 具备了信息获取的能力,确保系统不会受到其他因素的干扰。

2. 传感器技术在交通机电自动化控制中的实际应用

2.1 车辆检测与追踪

智能交通系统在运用多传感器融合技术方面,车辆检测 与追踪是其中的重点。这种技术通过整合摄像头、雷达、激 光雷达等多种传感器收集的数据,确保了交通系统对路面上 行驶车辆的精确识别与持续监控,对交通指挥和驾驶辅助系 统给予了显著的帮助。车辆检测作为多传感器融合技术的一 个核心环节,依靠不同传感器依据各自物理特性收集信息, 例如摄像头捕捉图像、雷达探测反射信号、激光雷达测量距 离和位置。通过综合这些传感器的数据并进行分析,能够高 效准确地实现道路车辆的检测。借助车辆检测技术,智能交 通系统能够实时掌握交通流量、车辆密度等关键数据, 为交 通管理提供科学的数据支持。运用多传感器融合技术进行车 辆追踪,即在完成车辆检测后,持续追踪车辆的移动轨迹和 状态变动。该技术能整合多种传感器数据,综合考量车辆的 位置、速度、加速度等参数,确保对车辆行驶过程的实时动 态追踪。通过车辆追踪,智能交通系统可以实时监控车辆行 为,如速度、转向、变道等,从而全面掌握交通状况,为交 通管理提供更精确的数据和深入的分析。车辆检测与追踪是 智能交通系统中多传感器融合技术的关键应用领域。多传感 器融合技术通过整合不同传感器数据,确保了对车辆的精确 检测与动态追踪,这对于交通管理、事故预防以及智能驾驶 辅助系统的完善,对于提升交通安全、缓解拥堵、优化交通 管理具有不可替代的作用。

2.2 交通流量监测

结合各式传感器(例如:摄像头、雷达、地磁感应器等) 所收集的信息,能够对道路上车流情况进行精确的监控与分 析,进而为交通管理与城市规划提供关键支撑。在交通流量 监测领域,传感器信息的整合技术发挥着不可或缺的作用。 不同种类的传感器能够提供车流的不同角度信息, 比如摄像 头能进行车辆图像的识别、雷达能测量车辆的速度和位置、 地磁感应器能记录通过的车辆数量等。将这些传感器所得数 据综合起来,智能交通指挥系统就能准确计算出车流量,涵 盖车辆总数、速度、种类等多维信息, 为交通管理提供详尽 的参考。多传感器融合技术使得车流监控得以实时进行,并 能对交通状况进行预测。传感器的协同作业,增强了信息搜 集与处理的效率,使得系统对道路上车辆动态有了迅速的反 应能力。智能交通指挥系统可以及时识别路段的交通状况, 分析拥堵成因及其严重性,有效地调整信号灯时序、执行交 通管制措施,从而减轻拥堵、提升道路运输效率。另外,通 过分析历史数据和即时反馈,智能交通系统还能够预测未来 的车流趋势,为交通管理部门的决策提供支持。交通流量监 测的应用前景十分广阔。在交通指挥方面,精确监控车流量 有助于解析拥堵问题、完善道路布局和信号灯控制,提升道 路通行效率和安全性。同时,交通流量监测还能与智能导航 系统联动,为驾驶者提供即时的道路信息、规划最优行驶路 径,从而改善驾驶感受。

2.3 智能信号控制

融合各式传感器(例如摄像头、雷达系统等)所采集的 信息,旨在对交通信号灯实施高效管理,从而提升道路通行 能力、缓解交通阻塞、并确保出行者享有更加安全舒适的旅 程。这种智能信号控制依赖于信息融合技术以捕捉即时的交 通信息。通过这些装置收集的数据,如车辆计数、车型分类、 车辆速度以及车流排队长度等,能反映出道路上的交通动态 和流量分布。将这些信息汇总和分析后,智能交通系统便能 进行更精确的交通流量预测、拥堵侦测及缓解策略的拟定。 智能信号控制系统根据即时交通情报对信号灯进行灵活调 整,以提升路口的通行效率。利用传感器融合技术所得的数 据,智能交通系统能够即时监控交通状况,预测未来的车流

文章类型: 论文I刊号 (ISSN): 2705-0637(P) / 2705-0645(O)

量,并依实际需求优化信号灯的周期时长和时序分配。譬如, 在车流拥堵时,系统可延长绿灯时长或调整信号相位,以减 轻拥堵压力,提高道路通行效率。在车流量较小的情况下, 系统则可适当缩减绿灯时长,减少无效等待时间,从而提升 路口的整体运作效率。智能信号控制还能与其它智能交通系 统协同作业,进一步增进道路交通的流畅性和安全性。比如, 智能信号控制可与智能导航系统联动,向驾驶者提供实时的 路况信息和最优行驶路线推荐,协助驾驶者规避拥堵区域, 缩短行车耗时。智能信号控制系统亦能与智能交通管理系统 联网,共享交通资讯和管控策略,实现交通系统的整体协同 运作。

2.4 交通事故检测与预警

交通事故检测依托于传感器应用,能够迅速识别并作出 反应于交通事故。常规的事故检测设备涵盖了加速度感应器、 碰撞传感器和视频监控系统。加速度感应器能够捕捉车辆在 遭遇碰撞时的加速度波动,以此作为事故发生的判断依据。 碰撞传感器则通过监测车辆所受压力,直接感知撞击事故的 发生。视频监控系统通过在道路旁安装的摄像头,对交通状 况进行实时监控,借助图像处理与分析技术,识别并判断事 故的出现。这些检测技术相互配合,通过对不同传感器数据 的综合分析,能够精确确定事故的具体位置和发生时间,为 事故处理和紧急救援提供坚实的数据支持。

事故预警系统依托于对道路状况与行车动态的即时监控,旨在降低交通事故的频率。此系统借助多样化的传感器持续跟踪公路状况与汽车状态,包括速度、距离以及驾驶习惯等关键指标。当传感器捕捉到任何异常信息时,预警机制将迅速利用无线技术向邻近车辆及交通调控中心发送警告,提醒驾驶人员实施预防措施,以规避潜在的事故风险。更高级别的预警系统还能整合气象传感器的资料,对恶劣气候条件下的行车安全给予警示。

2.5 环境监测与管理

通过对空气质量、噪音和温湿度的实时监控,能够对道路交通状况进行管理。空气质量传感器用于检测空气中污染物的含量,包括 PM2.5、二氧化氮以及一氧化碳等,经过数据整合分析,可以明确交通工具排放对大气品质的具体影响。噪音传感器则负责记录交通噪音程度,尤其是在车流量大的地段和居民生活区域,以便实施有效的降噪策略。温湿度传

感器则能够给出道路及周遭环境的气候信息,这对于预防道 路结冰和疏导车辆具有关键作用。

传感器在环境检测领域的重要性,主要反映在信息的搜集与动态监测功能上。借助部署于城镇各交通枢纽和街路的传感器,能够即时掌握详细的环境信息。这些高灵敏度的感应设备能捕捉到环境的细微变动,保障了信息的精确度与可信度。无线传感网络把搜集到的数据整合至中央监控平台,以便进行即时的监督与数据处理。得益于感应技术的提升,环境检测系统得以拓展其监控范围,提供更为完整的环境资讯。此外,传感器还能与其它智能交通系统如交通信号控制与疏导系统联动,构建起一个多元化的交通管理网络,从而提升城市交通管理的整体效率。

结束语:

综上所述,得益于传感器技术及机电一体化技术的助力, 交通机电自动化控制系统的智能化与自动化进程得到了显著 提升,这无疑成为了我国交通管理进步的关键推动因素。现 阶段,我国在交通机电自动化控制领域,传感器的集成度和 智能化水平不断提高,新型材料制成的传感器被广泛运用, 智能化进程持续加速。传感器与机电一体化技术的融合步伐 也在加快,这增强了交通机电自动化控制系统在信息感知方 面的速度,提高了信息采集与处理的精确度,进而促进了该 系统的高效和优质发展。

[参考文献]

[1]陈方之,廖华,钟文明等.基于 BN 算法的电力调度多源故障数据融合研究[J].电子设计工程,2023,31 (16):191-195.

[2]李永杰. 基于多数据融合的智能定位传感器避障算法研究[J]. 自动化与仪表, 2023, 38 (01): 48-52.

[3]宋坤,李雨婷,张钰颖等.基于改进多传感器数据融合算法的温室环境检测研究[J].现代电子技术,2023,46 (20):178-182.

[4]程翔. 探析传感器技术在机电自动化控制中的应用 [J]. 内燃机与配件, 2021, (03): 202-203.

[5]谢超艺. 传感器技术在机电自动化控制中的应用[J]. 时代汽车, 2020, (23): 14-15.

作者简介: 袁少林, 1982. 4, 男, 本科, 籍贯: 山西省吕梁市人, 职称: 自动化工程师, 研究专业方向: 交通机电。