第7卷◆第9期◆版本 1.0◆2025年

汕尾市区工业大道西段等市政综合工程总体方案中的 难点及解决思路

李林峰

广东省建筑设计研究院集团股份有限公司 广东广州 510000

DOI:10.12238/ems.v7i9.15262

[摘 要] 对复杂市政工程中多项大难度模块进行协调统合。汕尾工业大道是连接汕尾市西区东西向交通的重要通道。针对道路功能定位复杂、沿线排洪需求突出等问题,提出包含横断面优化、排洪系统整合及关键节点调整的总体设计方案。通过合理规划高程、设置排洪箱涵及隧道工程,解决了交通效率与排涝矛盾。工程实施后,道路通行能力提升至双向6车道,设计车速60km/h,排洪能力满足50年一遇标准。本设计为类似城市主干道改造项目提供了技术参考。

[关键词] 汕尾工业大道; 主干路; 方案; 设计

城市发展日新月异,交通需求不段加大,在城市扩张的途中,会出现更复杂的条件,一项工程往往需要解决多个方向上的需求和问题。常见需求:主干路对周边路网的兼容;城市外扩需要处理的更复杂的工程条件。常见问题:在区域规划中不断增多城市需求,例如本工程需要结合排洪渠进行统一考虑;在尽量保证城市风貌的需求下,对隧道方案选择。

在工业大道的方案研究过程中,在复杂的条件与需求中 找出综合的、统一的、协调的方案是研究的重点,对方案的 优缺点进行深入研究,让工程符合实际、满足需求。本次汕 尾市区工业大道西段等市政综合工程,将在文中对总体方案 基本思路和设计要点进行阐述,希望能为该类型工程设计思 路提供参考。

1工程概况

工业大道西段西起海滨大道西,路线向北经过香江大道路口后,在中央粮库北侧向东转向,穿过莲花山垭口,与城北路平交,路线往东穿越大鹏山,大鹏山路段设置明洞隧道,隧道长度175 m,终点位于汕尾大道路口处。路线全长约5.145 km,规划红线宽度60 m,全线道路设计宽度50 m,中央粮库至终点段两侧各5 m预留绿地,城市 I 级主干道,双向6 车道,设计车速60km/h;总投资约10 亿。(图1)

道路征地红线宽度 60 m, 分近远期实施, 近期道路实施 50 m 宽, 外侧各预留 5m 绿化带, 远期实施 60 m 宽道路。(图 2)

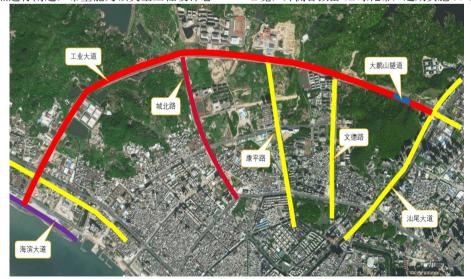


图 1 项目总体平面图

第7卷◆第9期◆版本 1.0◆2025年

文章类型: 论文|刊号 (ISSN): 2705-0637(P) / 2705-0645(O)

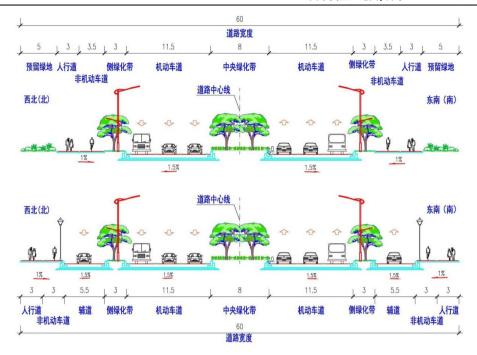


图 2 道路横断面布置图

该工程建成后,解决了汕尾市区城区的快速通道需求,成为城区北侧的区域环路,可以使城区东西两端的交通流能进行快速交换,并借助城北路、康平路、文德路与城区地块进行交通集散。

2 工程控制难点

2.1 地形地貌起伏多变

道路全线地势起伏:

起于海滩,在海滩位置需要在路基底部设置排洪渠出海口; 经过两座大山:莲花山与大鹏山,建设期间山上均有电 塔需要保护,同时要尽量工程给环境带来的影响,开挖山体 会改变山体汇水情况的变化,同时山体在复绿时与城市整体 景观的协调也需要统一考虑;

途径城区,该段位于城区北侧待开发区域,总体地势平缓,几处地势低洼情况需要与排洪渠协调考虑。排洪渠与道路并排布置给道路纵坡安排和排洪渠的设置带来更多 考虑因素。

2.2 控制因素复杂

控制因素多样且复杂

沿途主要地理控制因素有中央粮库、莲花山寺庙、琉璃 径水库、汕尾技师学院、大鹏山等。

3 节点优化

总体上,工业大道西段西起海滨大道西,路线向北经过 香江大道路口后,在中央粮库北侧向东转向,穿过莲花山垭 口,与城北路平交,路线往东穿越大鹏山,大鹏山路段设置明洞隧道,隧道长度175米,终点位于汕尾大道路口处。路线全长约5.145km,规划红线宽度60m,全线道路设计宽度50m,中央粮库至终点段两侧各5米预留绿地,城市 I级主干道,双向6车道,设计车速60km/h。

3.1 莲花山节点优化

海滨大道到中央粮库段,在工业大道下方设置8孔排洪箱涵,每孔尺寸为3 m x 2 m。其余段排洪渠位于工业大道西段北侧80 m 景观绿化带内,底宽8 m。本项目实施范围包括中央粮库向南至排海口的排洪箱涵,同步进行排洪渠方案考虑。

为配合排洪明渠的路线,工业大道在莲花山位置进行线位比选,主要考虑2个方向:1,路线大开挖,排洪明渠绕行莲花山北侧,该方案需更多征地,在征地困难的情况下难以实施,另绕行方案在绕出莲花山后,需要与更多地域的排洪方案统一考虑,造成简单问题复杂化;2,路线向南移至垭口位置,在垭口位置预留明渠修筑条件,该方案在尽量减小土方数量的基础上,完整的实现了项目自身的功能。同时在莲花山垭口南北侧两侧均有重要建筑需要进行避让和保护,比如莲花山上的寺庙和山脚中央粮库,该问题利用平纵线形微调完成。

对于路线的绕行方案和垭口方案,采用对比表进行优势 对比:

文章类型: 论文[刊号 (ISSN): 2705-0637(P) / 2705-0645(O)

对比项目	绕行方案	垭口方案
路线长度	绕行增加了约 280m 的路线长度,需要用一段大半	采用直线行驶通过垭口,线性简单,线
	径平曲线表达,增加平曲线长度,对行车产生影响	路前后节点并未受到重大影响
断面宽度	绕行后可选择相对开阔地带进行横断面布设	穿越垭口需要对横断面进行优化,尽量
		减少对两侧山体的开挖
平纵配合平顺性	前后节点在路线延长后有更多的灵活空间,平纵配	垭口位置仍为线路最高点,相对绕行线
	合占优	路,更近的前后节点,带来跟紧密的纵坡调整
对环境和地块的影响范围	绕行方案减少开挖,但绕行到山脚位置需要大面积	优化平面线位后,项目依然可以避开前
	规划商业地块用于道路的设置	后控制点的范围
给环境和地块带来的新问题	排洪渠因为与道路一起进行了绕行,需要对新的来	
	水面积进行计算,同时需要增加解决附近村镇的排洪问	围绕排洪规划进行安排,不打乱排洪安排
	题,打乱整体排洪布局	
工程造价	相对垭口方案增加 20%	-

因为绕行选线同在山区和琉璃径水库周边进行选择,在路 线线性和前后节点的处理上优势并不明显,同时产生了规划地 块与来水面积的变化,相比之下,翻越垭口方案更为优异。

3.2 大鹏山节点优化

大鹏山节点总体位于项目结尾段,在穿过大鹏山后,离山脚 200 m 既为同样高等级市政道路——汕尾大道。

在该处工程需要重点关注的因素有:

穿越大鹏山形式的选择

大鹏山总体呈南北向走势,南端深入汕尾城区,是重要的城市风景和地标,所以工程建设方案需要考虑的景观恢复和人文环境多方面因素,该山体主要以中风化与微风化岩为主,如果进行山体大开挖,结合地质条件,环境将会很难恢复。为保证山脉连贯和景观恢复,在不适合进行暗挖隧道建设的情况下,决定采用明挖隧道形式进行建设。

大鹏山段平纵线形的选择

大鹏山节点在做平纵配合的选择时,对前后路段的交通、控制点均做了考虑。隧道向西的上一个节点是距隧道洞口800 m 的文德路 T 型交叉口,该路口设有红绿灯;隧道向东的下一个节点是距隧道洞口200m的汕尾大道十字型交叉口,该路口建成后将承载汕尾城区"外环"纵横交通转换的重要节点。所以在平纵指标的选择上,需要满足:1、隧道平纵指标限制;2、长距离行车后节点的车速控制;3、临近隧道交叉口的交通转换需求。

与汕尾大道的交通转换

工业大道西段与汕尾大道的交叉口位于汕尾城区"外环"

的东北角,南北连接高铁站和城区,东西可通马宫与品清。 该位置的交通转换需求旺盛,且路口紧邻隧道洞口。需要刚 出隧道就做好交通转换,对交通设计的要求较高。

最终在考虑了以上多方面因素情况后决定,从文德路交叉口出发向东选取缓坡向前 100 m, 然后 2.4 %纵坡向上,近隧道段采用 3.787 %纵坡抬升以减少大鹏山隧道开挖,在明挖隧道段依山势回填(图 6),为顺接汕尾大道路口,在隧道内采用以 2.814 %纵坡下降,出隧道后根据交叉口需求采用 2 左转+1 直左+1 直行进入交叉口。

4 结语

大型环城性质主干道特点是条件复杂、节点控制因素众多、综合需求复杂。总体上,必须承接规划、结合现状、控制变化范围,根据实际情况,兼顾环保、投资等因素,从大局出发,合理选择主要控制点和控制因素,在众多思考路径中选择最优方案。本文主要针对项目中的两个重要节点进行阐述,希望为类似工程项目提供经验和设计参考。

[参考文献]

- [1]《城市道路工程设计规范》(CJJ 37—2012)(2016 年版)
 - [2]《城市道路路线设计规范》(CJJ 193—2012)
 - [3] 《城市道路交叉口设计规程》 (CJJ 152-2010)
 - [4]《城市道路路基设计规范》CJJ 194-2013

作者简介:李林峰,男,出生年月:1982.03.14,汉族,籍贯:湖南,学历:本科,职称:助工,研究方向:市政道路。