选煤厂智能化升级中电气二次回路适应性重构策略分析

高杨

内蒙古蒙泰不连沟煤业有限责任公司 内蒙古鄂尔多斯 010303

DOI: 10.12238/ems.v7i10.15742

[摘 要]选煤厂智能化升级是行业发展趋势,电气二次回路适应性重构至关重要。分析选煤厂智能化升级需求,探讨电气二次回路现状及问题,提出针对性重构策略,涵盖回路优化、设备适配等方面,以提升选煤厂智能化水平与电气系统稳定性、可靠性,为选煤厂智能化发展提供电气层面支持。

[关键词] 选煤厂;智能化升级;电气二次回路;适应性重构策略

引言:

随着科技发展,选煤厂智能化升级成为必然。电气二次 回路作为保障选煤厂电气系统稳定运行的关键部分,在智能 化升级中面临适应性问题。深入分析其适应性重构策略,对 推动选煤厂智能化进程、提高生产效率与质量具有重要现实 意义。

1. 选煤厂智能化升级概述

1.1 智能化升级背景

随着工业智能化浪潮的推进,选煤行业面临着转型升级的迫切需求,智能化升级成为提升选煤厂核心竞争力的必然选择。传统选煤厂在生产过程中过度依赖人工操作,生产效率低、能耗高且产品质量稳定性不足,难以适应现代煤炭工业高质量发展的要求。国家产业政策对制造业智能化转型的支持力度不断加大,鼓励工业企业采用先进技术实现生产过程的自动化、信息化和智能化,为选煤厂智能化升级提供了政策保障。同时,市场对煤炭产品的质量要求日益提高,选煤厂需要通过智能化手段优化分选工艺,提高精煤回收率和产品质量稳定性。此外,劳动力成本上升和专业技术人员短缺的问题逐渐凸显,推动选煤厂通过智能化设备替代人工,减少人为操作误差,降低安全风险,实现降本增效和可持续发展。

1.2 智能化升级目标

选煤厂智能化升级旨在构建高效、精准、安全、绿色的 现代化生产体系,实现生产全流程的智能化管控。通过引入 先进的传感器、自动化控制设备和信息管理系统,实现对原 煤分选、产品运输、设备运行等环节的实时监测与精准调控, 提高生产效率和资源利用率。目标之一是建立一体化智能管 控平台,整合生产、设备、能耗、安全等各类数据,实现信 息共享与协同管理,为管理层提供全面、准确的决策依据。 同时,通过智能化升级优化生产工艺参数,减少人为干预, 提高产品质量的稳定性和一致性,满足不同客户的个性化需 求。在安全方面,借助智能监测与预警系统,实时感知设备 故障和生产环境风险,提前采取预防措施,降低安全事故发 生率。此外,智能化升级致力于降低能耗和污染物排放,通 过精准控制设备运行状态和资源消耗,实现绿色低碳生产, 推动选煤厂向现代化、智能化企业转型。

2. 电气二次回路现状分析

2.1 现有回路特点

选煤厂现有电气二次回路多为传统设计模式,具有结构相对固定、功能单一且依赖人工操作的特点。这些回路主要由继电器、接触器、仪表等常规电气元件构成,通过硬接线方式实现对一次设备的控制、保护和监测功能,回路设计侧重于满足基本的生产控制需求,缺乏灵活性和扩展性。在控制逻辑上,多采用固定的继电器逻辑控制,修改控制方式需要重新布线和更换元件,难以适应生产工艺的动态调整。监测功能较为基础,通常只能实现设备运行状态的简单指示和故障报警,缺乏对关键参数的实时采集和深度分析能力,数据传递主要依赖人工记录和报表统计,信息滞后且准确性难以保证。此外,现有回路多为分散式布局,不同设备的二次回路独立运行,缺乏统一的信息交互接口,无法实现数据的集中管理和协同控制,整体呈现出自动化水平低、集成度不高的特点。

2.2 存在的适应性问题

随着选煤厂智能化升级的推进,现有电气二次回路逐渐 暴露出诸多适应性问题,难以满足智能化生产的需求。回路

文章类型: 论文1刊号 (ISSN): 2705-0637(P) / 2705-0645(O)

结构固定导致灵活性不足,当生产工艺调整或设备升级时, 二次回路需要进行大规模的硬件改造和重新布线,不仅增加 了改造成本和周期,还容易引发新的故障隐患。控制功能单 一无法满足智能化管控要求,传统回路仅能实现简单的启停 控制和保护,缺乏对设备运行参数的精准调节和远程控制能 力,无法与智能管控平台实现数据交互和联动控制。监测能 力薄弱制约了智能化水平提升,现有回路的监测点少、数据 类型单一,无法全面反映设备运行状态和生产过程变化,难 以支撑智能诊断和预测性维护。此外,设备兼容性差成为突 出问题,不同厂家、不同型号的设备二次回路接口标准不统 一,难以实现与新增智能设备的无缝对接,导致智能化系统 无法充分发挥效能,严重阻碍了选煤厂智能化升级的进程。

3. 适应性重构策略制定

3.1 回路结构优化

对电气二次回路进行结构优化是实现其与智能化升级适配的基础,需从整体架构和布局入手进行重构。采用模块化设计理念,将二次回路划分为控制模块、保护模块、监测模块和通信模块等独立功能单元,各模块通过标准化接口连接,实现功能的灵活组合与扩展,当生产需求变化时,只需更换或增加相应模块即可,减少整体改造工作量。推行分布式与集中式相结合的布局方式,在设备附近设置本地化控制单元,负责实时控制和数据采集,同时通过高速通信网络将各单元与中央控制中心连接,实现集中监控和统一管理,既保证了控制的实时性,又提高了系统的集成度。简化回路接线方式,用软件逻辑替代部分传统继电器的硬接线逻辑,通过可编程逻辑控制器实现控制逻辑的灵活配置和在线修改,减少硬件元件数量和接线复杂度,降低故障发生率。此外,预留充足的扩展接口和通信通道,为后续新增智能设备和功能模块接入提供便利,确保回路结构能够长期适应智能化升级的需求。

3.2 设备兼容性提升

提升设备兼容性是保障电气二次回路与智能化系统协同运行的关键,需要从接口标准化和协议统一化方面采取措施。制定统一的设备接口标准,规范二次回路与智能传感器、执行器、监控设备等的连接方式、信号类型和电气参数,确保不同厂家的设备能够无缝对接,减少接口适配问题。采用通用的通信协议,将二次回路的通信模块统一升级为支持工业以太网、无线通信等主流协议的设备,实现与智能管控平台、

PLC 系统、人机界面等的标准化数据交互,消除信息孤岛。 建立设备兼容性测试机制,在新设备接入或系统升级前,对 二次回路与相关设备的通信稳定性、数据传输准确性进行全 面测试,及时发现并解决兼容性问题,确保系统整体运行顺 畅。此外,对现有老旧设备的二次回路进行改造升级,加装 协议转换模块或适配器,使其能够适应新的通信标准和接口 要求,最大限度利用现有设备资源,降低升级成本,提升整 个电气系统的兼容性和协同性。

4. 重构策略实施要点

4.1 实施步骤规划

选煤厂电气二次回路适应性重构的实施步骤规划需紧密 结合生产实际与智能化升级目标,构建分阶段、有重点的推 进体系。前期准备阶段要组建专业技术团队,涵盖电气工程 师、自动化专家、生产管理人员等,共同开展全面的现场勘 查,对现有二次回路的设备型号、接线布局、运行记录、故 障历史等进行细致梳理,同时深入了解各生产环节的工艺特 点和智能化需求, 明确重构后回路需实现的数据采集、远程 控制、状态监测等功能目标。基于勘查结果和需求分析,进 行方案设计,包括同路拓扑结构优化、智能元器件选型、接 口协议统一、与上层管控系统对接方案等,方案需充分考虑 与现有一次设备的兼容性及未来扩展需求,并组织多轮技术 论证确保可行性。方案确定后进入试点实施阶段,选取生产 流程中具有代表性的环节, 如重介分选系统、压滤机控制系 统等,按设计方案进行二次回路改造,安装智能传感器、智 能继电器、通信模块等设备,完成接线调试后进行单机试运 行,重点验证数据传输的稳定性、控制指令的响应速度及与 原有系统的协同性,记录试点过程中的问题并进行针对性优 化。试点成功后启动全面推广,按照生产系统的关联性划分 区域,制定详细的施工进度计划,避免不同区域施工相互干 扰,施工过程中严格遵循电气安装规范,做好新旧回路的切 换衔接,确保生产不中断。全面改造完成后进行系统联调, 测试各回路之间、回路与智能管控平台之间的通信和联动功 能,通过模拟各种工况验证系统的稳定性和可靠性,最后组 织验收,对重构后的回路性能、功能实现情况进行全面评估, 整理形成完整的技术文档和运维手册。

4.2 安全保障措施

重构过程中的安全保障措施需贯穿实施全流程, 从技术

文章类型: 论文1刊号 (ISSN): 2705-0637(P) / 2705-0645(O)

规范、管理机制、人员防护等多维度构建安全防护体系。技 术层面要严格执行电气安全操作规程,施工前对涉及的设备 进行彻底断电, 悬挂醒目的安全警示标识, 使用合格的验电 工具确认无电后,采取接地保护等措施防止突然来电,对作 业区域设置安全围栏或警戒线, 严禁无关人员进入。改造过 程中所有接线操作必须符合电气设计标准,导线连接牢固可 靠,绝缘层完好无损,每完成一处接线都要进行导通测试和 绝缘电阻测量, 避免短路、接地等隐患, 对于涉及高压回路 的改造,必须使用符合安全标准的绝缘工具,作业人员穿戴 绝缘防护装备。管理层面要建立健全安全责任制度,明确项 目负责人、技术负责人、现场监护人的具体职责, 施工前召 开安全交底会议,详细讲解作业流程、风险点及防范措施, 所有参与施工人员必须经过安全培训并考核合格后方可上 岗。制定完善的应急预案,针对可能发生的触电、设备故障、 停电等突发事件,明确应急处置流程、责任人及联络方式, 配备充足的急救设备、灭火器材、备用电源等应急物资,定 期组织应急演练确保人员熟练掌握处置技能。施工过程中实 行全程监护制度,现场监护人实时监督作业行为,及时制止 违规操作,每日作业前检查安全防护措施落实情况,作业后 清理现场并确认无安全隐患,同时建立安全日志,详细记录 每日施工内容、安全检查情况及问题处理结果,确保安全管 理可追溯。

5. 策略应用效果预期

5.1 系统性能提升

电气二次回路适应性重构策略的应用预期将显著提升选 煤厂电气系统的整体性能,为智能化生产筑牢基础。回路结 构经优化后采用模块化设计,各功能单元边界清晰,接线简 洁规范,不仅降低了线路故障排查难度,还使系统扩展更加 便捷,当生产工艺调整或新增设备时,只需对相应模块进行 改造即可,大幅减少了系统改造的周期和成本。智能元器件 的应用提升了回路的感知能力和控制精度,能够实时采集设 备的电流、电压、温度、振动等运行参数,并通过精准的逻 辑判断实现设备的自动保护和调节,避免因参数异常导致的 设备损坏,降低了故障发生率。数据传输采用标准化接口和 抗干扰技术,确保各类信息在回路与智能管控平台之间高效 稳定传输,消除了传统回路中数据孤岛现象,使管理人员能 够实时掌握设备运行状态,为生产调度提供准确依据。系统 响应速度明显加快,控制指令从发出到执行的延迟大幅缩短, 设备启停、参数调整更加迅速,有效减少了生产过程中的过 渡时间损失,提高了设备运行效率。

5.2 智能化水平体现

重构策略的落地将推动选煤厂智能化水平实现实质性跨 越,充分彰显智能化升级的核心价值。二次回路与智能管控 平台深度融合后,构建起覆盖全生产流程的智能监测网络, 通过遍布各环节的传感器实时捕捉生产数据, 经分析处理后 形成可视化的运行报表和趋势图表,管理人员无需深入生产 现场即可全面掌握原煤入洗量、产品质量、设备状态等关键 信息,决策依据更加充分,响应更加及时。远程控制功能的 实现打破了传统生产模式的时空限制,操作人员可在中央控 制室通过人机交互界面完成对各设备的启停、参数调节等操 作,部分危险区域或环境恶劣岗位实现无人值守,既降低了 人工劳动强度, 又减少了人为操作失误, 生产过程的规范性 和一致性得到保障。智能算法与二次同路协同工作,能够根 据原煤性质变化、产品质量要求等因素自动优化生产参数, 如调节重介悬浮液密度、控制浮选药剂添加量等,使精煤回 收率和产品质量稳定性显著提升,满足市场对高品质煤炭产 品的需求。

结束语:

选煤厂智能化升级中电气二次回路适应性重构策略的实施,可有效解决回路适应性问题。通过科学规划与合理实施,能提升电气系统性能,推动选煤厂智能化发展,为行业转型升级与可持续发展奠定坚实电气基础,助力选煤厂在新时代取得更好效益。

[参考文献]

- [1] 冯中爱,万萍,鹿奇,等.选煤厂电气干扰及其处理措施[J]. 能源与节能,2024,(08):38-40.
- [2] 衣成堃. 电气控制自动化技术在选煤厂中的应用[J]. 自动化应用, 2024, 65 (S1): 273-275.
- [3]杨正东. PLC 在选煤厂电气自动化设备中的应用[J]. 矿业装备, 2024, (01): 48-50.
- [4] 杨超. 选煤厂电气集中控制系统的优化设计研究[J]. 石化技术, 2023, 30 (12): 279-280+229.
- [5]牛慧,滕斌,袁金龙. 电气控制自动化技术应用于选煤厂的实践探究[J]. 内蒙古煤炭经济, 2023, (19): 157-159.