X射线衍射法精确测定大晶粒 UO 2 芯块点阵常数

李涛¹ 邓海平¹ 王大波¹ 张广² 1 中广核铀业发展有限公司 2 中广核研究院有限公司 DOI:10.12238/etd.v6i2.12978

[摘 要] 大晶粒UO₂芯块因其优异的堆内性能,可以有效提高核电站安全性。晶体点阵常数作为其微观结构的重要参数,直接影响材料密度、热膨胀系数等关键性能指标,对优化核燃料设计和性能评估具有重要意义。本文采用X射线衍射法对大晶粒UO₂芯块点阵常数进行精确测定,通过对比不同制样及数据处理方法,测得普通UO₂芯块点阵常数为0.547036nm,与文献值一致,验证了测量准确性。添加0.10wt%Cr₂O₃和0.02wt%Al₂O₃后,UO₂芯块的平均晶粒尺寸从7.60μm增至43.37μm,由于固溶效应引发晶格收缩,点阵常数降至0.546750nm。本研究建立了高精度点阵常数的测定方法,同时揭示了掺杂剂对UO₂晶格结构的影响,对二氧化铀其他参数测定提供了数据支持。

[关键词] X射线衍射法; 大晶粒二氧化铀; 点阵常数; 晶体结构

中图分类号: TG115.22+2 文献标识码: A

Accurate determination of lattice constants of large grain UO₂ pellets using X-ray diffraction method

Tao Li¹ Haiping Deng¹ Dabo Wang¹ Guang Zhang²
1 CGN Uranium Industry Development Co., Ltd;
2 China Nuclear Power Technology Research Institute Co., Ltd

[Abstract] Large-grained UO₂ pellets exhibit superior in-reactor performance, effectively enhancing the safety of nuclear power plants. The lattice parameter, as a critical microstructural characteristic, directly influences key properties such as material density and thermal expansion coefficient, making its determination essential for optimizing nuclear fuel design and performance evaluation. This study employed X-ray diffraction (XRD) to precisely measure the lattice parameter of large-grained UO₂ pellets. By comparing different sample preparation and data processing methods, the lattice parameter of conventional UO₂ pellets was determined to be 0.547036 nm, consistent with literature values, thereby validating the measurement accuracy. Upon doping with 0.10 wt% Cr₂O₃ and 0.02 wt% Al₂O₃, the average grain size of UO₂ pellets increased from 7.60 μm to 43.37 μm, while the lattice parameter decreased to 0.546750 nm due to lattice contraction induced by solid solution effects. This work establishes a high-precision methodology for lattice parameter determination and elucidates the impact of dopants on the UO₂ lattice structure, providing critical data support for further characterization of uranium dioxide parameters.

[Key words] X-ray diffraction method; Large-grained uranium dioxide (UO2); Lattice parameter; Crystal structure

引言

大晶粒U0₂芯块通过掺杂助烧剂,以增大U0₂的晶粒尺寸,提高燃料的热导率和裂变产物滞留能力。相比传统U0₂芯块,大晶粒U0₂ 芯块具有优异的堆内性能,在提高压水堆核电站的经济性的同时,可以有效提高其安全性,近年来受到越来越多的关注^[1-2]。

点阵常数是晶体结构的一个重要参数, 精确的晶体点阵常数 测定有很多重要的应用, 例如在相图研究、固溶体研究、晶体的密 度、热膨胀系数的测定、金属材料中应力的测定以及矿物学中类质同象系列的研究等方面,均需要有精确的晶体点阵常数数据^[3]。

Mieszczynski等人通过掺杂 Cr_2O_3 制备出了大晶粒 UO_2 芯块,并研究了辐照前后 UO_2 芯块的晶格尺寸、辐照后亚晶粒数量的变化,研究发现 UO_2 芯块掺杂 Cr_2O_3 晶格常数的变化,发现掺杂后 UO_2 芯块晶面的晶格常数由 (0.5472 ± 0.0002) nm減小到 (0.5469 ± 0.0002) nm。Yao等人研究了在 UO_2 中添加 TiO_2 能有效提高 UO_2 芯块

文章类型: 论文|刊号 (ISSN): 2737-4505(P) / 2737-4513(O)

的晶粒尺寸,同时TiO₂的加入会导致UO₂晶格常数增大,XRD衍射峰向低角度偏移,导致这一现象的原因是UO₂化学计量比发生了变化,部分间隙原子导致其晶格畸变。

本文采用X射线衍射法对大晶粒U02芯块点阵常数进行精确测定,通过对比不同制样及数据处理方法,研究大晶粒芯块掺杂助烧剂后点阵常数的变化,揭示掺杂金属氧化物对原U02芯块微观结构的影响,以对二氧化铀其他参数测定提供数据支持。

1 实验材料和方法

- 1.1材料和设备
- (1)UO2普通芯块,由核极UO2粉末烧结制成。
- (2)U0₂大晶粒芯块,由核极U0₂粉末以及添加0.10wt%Cr₂O₃和0.02wt%Al₂O₃烧结制成。
 - (3) 硅粉标准物质, SMR 640f, 用于校准仪器。
 - (4) X射线衍射仪, 丹东通达TD-3700, Cu靶。
 - (5)自动金相镶样机,用于镶嵌样品。
 - (6)砂轮切割机,用于切割芯块。
 - (7)自动研磨抛光机,用于抛光制备的芯块表面。
 - 1.2实验方法

1.2.1扫描参数

点阵常数精确测定时,使用步进扫描,步进为0.01°,每步测量时间为1s。作一般相分析时,使用连续扫描,步进为0.02°,每步测量时间为0.5s。

1.2.2样品制备

分别使用两种制样方法进行制样,分别是镶样法和切片法, 通过实验测试两种制样方法所得样品,获得最佳制样方法。

- (1) 镶样法是在自动金相镶样机中使用环氧树脂包裹芯块样品,升温使树脂熔融,以固定芯块。然后在研磨抛光机上打磨抛光,至芯块最大横截面。
- (2)切片法是将U0₂芯块切割为厚度1.5~5mm的薄片,并使用 粘附1200目SIC砂纸的自动研磨抛光机对芯块切片进行打磨、抛 光,将多个薄片样品用橡皮泥固定后进行测试。

1.2.3数据处理

文献中有两种计算点阵常数的方法,分别是软件拟合计算和直线外推计算。进行两种计算方法结果对比,获得更准确的数据处理方法。

- (1) 软件拟合法。使用软件进行精修,并计算其点阵常数, 具体过程为:在得到晶体点阵常数初值并对已有衍射线的衍射 指标作了标定的基础上,在全谱范围内选择一种衍射峰峰形函 数,把这种峰形函数所对应的峰形参数、各衍射峰的强度及晶体 点阵常数作为拟合精修参数,在全谱范围内进行拟合精修,从而 得到准确的晶体点阵常数a0。
- (2) 图解外推法。衍射测试中的各项几何误差,如试样透明误差、离轴误差和零点误差等,当2 θ 趋于180°时,造成的误差趋近于0,可以利用此规律进行数据处理以消除其影响。外推函数有 $\cos^2\theta$, $\cot^2\theta$, $\cos^2\theta$ sin θ 三种, 研究表明立方晶系使用 $\cos^2\theta$ 计算具有更好的精度。

从图谱中获取各衍射峰的衍射角度, 然后利用公式外推计算。测量试样中2 θ 大于90°的各衍射线的2 θ 值, 分别求出其α值, 然后以 $\cos^2\theta$ 为横坐标, α 为纵坐标, 取点作图, 外推至 $\cos^2\theta$ 为0处, 得到对应的 α 0值。

2 结果与讨论

2.1样品制备对衍射图谱的影响

样品制备是影响衍射图谱的一个重要因素。为了研究样品的最佳制备方法,分别通过镶样和切片两种方法对样品进行制备。首先以镶样法制备样品进行了测试,以连续扫描法,步进0.02°,每步测量时间为0.5s的参数进行测试,测试所得图谱如图1所示。

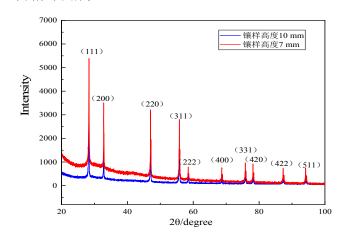


图1 镶样法制样所得衍射图

由图1可知,使用镶样法制备样品时,在低角度时,图谱基线过高,且当样品厚度越厚基线变高程度越大。另外,111晶面的衍射峰角度为28.29°(标准卡片PDF#065-0285值为28.23°),这表明衍射峰角度发生了较大偏移。这可能是镶样法制样的样品高度较高,低角度下衍射线发生散射,导致基线偏高,影响测试准确性。因此,需试验其他制样方法确保测试的准确性。

因此,按照切片法制样步骤制备了样品,在相同测试条件下进行行射图谱测试,所得图谱如图2。

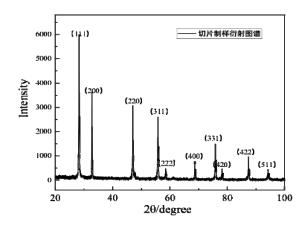


图2 切片法制样所得衍射图

由图2可知,使用切片法制样衍射图谱基线平整,111晶面的

文章类型: 论文|刊号 (ISSN): 2737-4505(P) / 2737-4513(O)

衍射峰角度为28.22°,角度偏差小,表明通过切片法处理样品能获得更准确的测试结果。因此,后续采用切片法制备样品进行测试。

2.2二氧化铀芯块点阵常数测定

为了精确测定二氧化铀芯块点阵常数,使用切片法制备样品,使用步进扫描,角度增量为0.01°,每步测试时间1s,测试了二氧化铀芯块样品20-140°全衍射峰图谱,如图3所示。

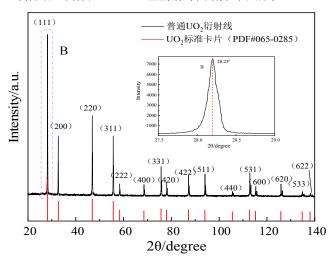


图3 二氧化铀芯块衍射图谱

将图谱导入JADE软件后, 搜索物相, 找到对应的PDF卡片标定样品, 发现物相与U0₂标准卡片PDF (#065-0285) 符合, 如图3所示, 表明样品为纯二氧化铀。

根据文献描述,二氧化铀为面心立方结构,其晶胞边长a =b=c,只要计算出一条边长a就可以得到二氧化铀的点阵常数。文献中有两种计算点阵常数的方法,分别是软件拟合计算和直线外推计算。进行两种计算方法结果对比,获得更准确的数据处理方法。首先以软件拟合法进行计算。

2.2.1软件拟合计算点阵常数

使用Jade软件对衍射图谱进行拟合,峰形函数选择pseudo-Voigt函数,分别进行单峰和全谱拟合,结果发现拟合结果较好,全谱直接拟合R因子为7.44%,单峰拟合R因子值为5.13%。单峰拟合可以通过手动调整部分峰形,能得到比全谱拟合更精确的结果,这与刘等人的研究一致^[4]。通过单峰拟合后,进行Rietveld精修并计算点阵常数。测试了三个样品,最后计算得到普通二氧化铀芯块的点阵常数平均值为0.547036nm,与文献中的结果0.547040nm基本一致。

表1 二氧化铀芯块点阵常数拟合计算结果

样品编号	1	2	3		
点阵常数(nm)	0. 547066	0.547050	0.546992		
平均值ā (nm)	0.547036				

2.2.2图解外推法计算点阵常数

然后以图解外推法计算二氧化铀芯块点阵常数, 此方法需要获得2 θ 大于90°的衍射线。表2为二氧化铀普通芯块高角度谱线的衍射数据。通过对比Si标样在相同测试条件下2 θ 值实测值和理论值, 计算得到差值 Δ 2 θ , 并作 Δ 2 θ ~2 θ 曲线。以修正二氧化铀的衍射2 θ (衍)值, 得到的修正值2 θ (修), 并计算修正后的cos2 θ (修)和对应的点阵常数a。

表2 二氧化铀普通芯块高角度谱线的衍射数据

hkl	$\sqrt{h^2 + k^2 + l^2}$	2θ (测)	2θ(修)	θ (修)	cos²θ(修)	a(Å)
511	5. 20	94.043	94.043	47. 022	0.465	5. 470939
440	5. 66	105. 612	105. 599	52. 800	0.366	5. 470602
531	5. 92	112. 842	112. 822	56. 411	0.306	5. 470588
600	6. 00	115. 323	115. 313	57. 657	0.286	5. 470814
620	6. 32	125. 903	125. 891	62. 946	0.207	5. 470352
533	6. 56	134. 853	134. 839	67. 420	0.147	5. 470556
622	6. 63	138. 163	138. 148	69. 074	0.128	5. 470399

根据表2中的高角度谱线, 绘制 $\alpha^{\sim}\cos^2\theta$ 图, 用图解外推法 外推到 $\cos^2\theta$ =0 (2 θ =180) 处确定点阵常数, 确定二氧化铀普通 芯块的点阵常数 α_0 =0. 547024nm。

对比两种计算方式,发现使用软件拟合具有更准确的结果,因此,采用软件拟合计算二氧化铀芯块点阵常数。

2.3大晶粒芯块点阵常数测定

2.3.1大晶粒芯块制备

根据文献研究,通过掺杂微量添加剂可以促进U0。芯块的晶粒长大,而促进芯块晶粒长大的机制是在烧结过程中发生了液相烧结,即材料在烧结温度下有一部分能够熔化,形成液相。在之后的溶解-析出过程中,作为添加剂添加的小颗粒溶解后在二氧化铀表面析出,从而二氧化铀颗粒长大,添加剂颗粒消失,使得二氧化铀晶粒尺寸增加。

因此,通过在二氧化铀粉末中添加0. 10wt%Cr₂O₃和0. 02wt% Al₂O₃,烧结得到大晶粒芯块,并使用金相显微镜对添加Cr₂O₃和 Al₂O₃前后的晶粒尺寸进行了测试。经过测定,发现芯块的平均晶粒尺寸由7. 60 μ m增加到43. 37 μ m, 这表明添加Cr₂O₃和Al₂O₃能够大幅增加二氧化铀芯块晶粒尺寸。

2.3.2大晶粒芯块点阵常数测定

为了测定添加Cr₂O₃和Al₂O₃后,大晶粒芯块点阵常数的变化,以和普通芯块相同的实验条件测试了大晶粒二氧化铀芯块样品,其衍射图谱如图4所示。

由图4可知,大晶粒二氧化铀芯块衍射图谱与普通芯块样品基本一致,但其111面衍射线角度为28.27°,相比普通二氧化铀芯块,其衍射峰角度向高角度小幅偏移了0.04°。这可能是由于添加的Cr和A1固溶进了二氧化铀内,形成了固溶体,导致衍射角度偏移。

文章类型: 论文|刊号 (ISSN): 2737-4505(P) / 2737-4513(O)

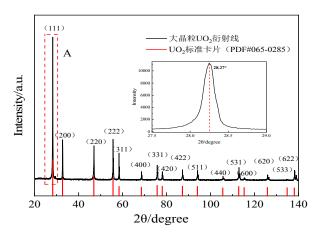


图4 大晶粒二氧化铀芯块衍射图谱

根据前文结果,利用软件拟合以及晶胞精修可以获得更准确的结果。因此,导入样品测试图谱后,进行了拟合,获得了大晶粒芯块的点阵常数,结果如表3所示。测试了三个样品,点阵常数平均值为0.546750nm。

表3 大晶粒芯块点阵常数计算结果

样品编号	1	2	3		
点阵常数(nm)	0.546748	0. 546744	0.546758		
平均值ā(nm)	0.546750				

对比大晶粒芯块和普通芯块点阵常数,发现大晶粒芯块的点阵常数 (0.546750 nm) 低于普通 UO_2 芯块点阵常数 (0.547036 nm),这是由于大晶粒芯块中添加了少量的 Cr_2O_3 和 Al_2O_3 , Cr^3 (0.0615 nm) 和 Al^3 (0.0535 nm) 的离子半径小于 U^4 (0.089 nm),在烧结过程中,添加的 Cr_2O_3 和 Al_2O_3 小颗粒发生溶解,然后在二氧化铀表面析出,过程中溶质原子进入晶格,导致产生晶格畸变和晶格收缩,使大晶粒芯块 UO_2 点阵常数降低。

3 结论

本文通过 X 射线衍射法精确测定了大晶粒 $U0_2$ 芯块点阵常数,并分析了掺杂 Cr_2O_3 和 Al_2O_3 对U02晶格结构的影响。主要结论如下:

- (1)对比了镶样法与切片法的测试效果,发现切片法制备的样品衍射图谱基线更平整,衍射峰角度偏移更小,表明切片法制样测试结果更具准确性。
- (2) 通过对比软件拟合法与图解外推法,发现软件拟合法结果更精确,并利用软件拟合法计算得到普通U0₂芯块点阵常数为0.547036nm,与文献值0.547040nm一致,表明芯块点阵常数的测试方法准确。
- (3)添加0.10wt% Cr203和0.02wt%Al203后,得到平均晶粒尺寸为43.37μm的大晶粒U02芯块,测得其点阵常数相比普通芯块降低为0.546750nm。原因是Cr和Al的离子半径小于U,在烧结过程中产生固溶后Cr和Al原子进入U02晶格,导致整体晶格收缩,验证了添加剂通过固溶效应改变晶格结构的机理。

[参考文献]

[1]庞华,辛勇,岳慧芳,等.大晶粒UO₂燃料芯块性能研究进展 [J].材料导报,2022,36(4):1-8.

[2]任岩,段盼盼,冷科,等.大晶粒UO₂芯块制备的研究现状[J]. 科技视界,2022(26):34-37.

[3]马礼敦.X射线衍射在材料结构表征中的应用[J].理化检验(物理分册),2009,45(8):501-510.

[4]刘广耀,饶光辉.数据处理方法对XRD点阵常数测定的影响[C]//第十七届全国相图学术会议暨相图与材料设计国际研讨会,0[2025-04-19].

作者简介:

李涛(1986--),男,汉族,甘肃庆阳人,大学本科,工程师,从事 核燃料研发与制造研究。